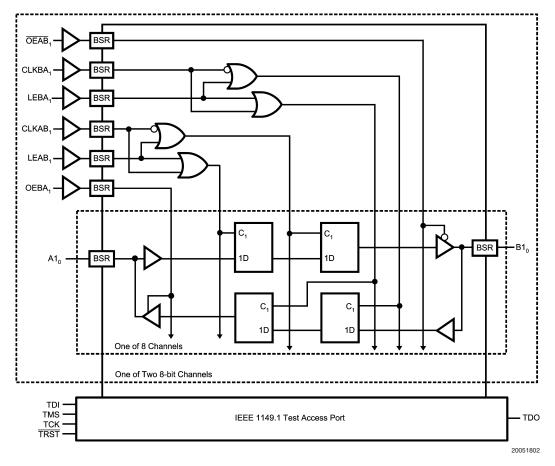


SCAN16602

Low Voltage Universal 16-bit IEEE 1149.1 Bus Transceiver with TRI-STATE® Outputs

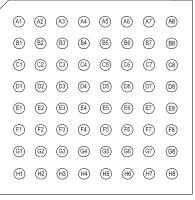

General Description

The SCAN16602 is a high speed, low-power universal bus transceiver featuring data inputs organized into two 8-bit bytes with separate output enable and latch enable control signals. The byte-wide output enable controls are complimentary to allow direction control with a single $R\overline{\rm W}$ line and no additional logic. This function is configurable as a D-type Latch or Flip-Flop, and can operate in transparent, latched, or clocked mode. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture with the incorporation of the defined boundary-scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS), Test Clock (TCK), and Test Reset (TRST).

Features

- IEEE 1149.1 (JTAG) Compliant
- 2.7V to 3.6V V_{CC} Operation
- TRI-STATE outputs for bus-oriented applications
- Dual byte-wide data for bus applications
- Power down high Impedance inputs and outputs
- Optional Bus Hold on data inputs eliminates the need for external pullup/pulldown resistors (SCANH16602, SCANH162602 versions)
- Optional 25Ω series resistors in outputs to minimize noise and eliminate termination resistors (SCAN162602, SCANH162602 versions)
- Supports live insertion/withdrawal
- Includes CLAMP and HIGHZ instructions

Block Diagram


TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Pin Descriptions Pin Description Name Normal-function A-bus I/O ports. See function table for normal-mode logic. A1₀-A1₇, A2₀-A2₇ B1₀-B1₇, Normal-function B-bus I/O ports. See function table for normal-mode logic. B2₀-B2₇ CLKAB₁, Normal-function clock inputs. See function table for normal-mode logic. CLKBA₁, CLKAB₂, CLKBA₂ GND Ground V_{CC} Supply Voltage LEAB₁, Normal-function latch enables. See function table for normal-mode logic. LEBA₁, LEAB₂, LEBA₂ OEAB₁, Normal-function output enables. See function table for normal-mode logic. OEBA₁, OEAB₂, OEBA₂ TDO The Test Data Output to support IEEE Std 1149.1-1990. TDO is the serial output for shifting data through the instruction register or selected data register. TMS The Test Mode Select input to support IEEE Std 1149.1-1990. TMS directs the device through it's TAP controller states. An internal pull-up forces TMS high if left unconnected. **TCK** The Test Clock input to support IEEE Std 1149.1-1990. Test operations of the device are synchronous to TCK. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK. TDI The Test Data Input to support IEEE Std 1149.1-1990. TDI is the serial input to shift data through the instruction register or the selected data register. An internal pull-up resistor forces TDI high if left unconnected. TRST The Test Reset Input to support IEEE Std 1149.1-1990. TRST is the asynchronous reset pin which will force the TAP controller to it's initialization state when active. An internal pullup resistor forces TRST high if left unconnected.

BGA Pinout

	1	2	3	4	5	6	7	8
Α	A1 _o	A1 ₂	A1 ₄	A1 ₆	A2 ₀	A2 ₂	A2 ₄	A2 ₆
В	A1 ₁	A1 ₃	A1 ₅	A1 ₇	A2 ₁	A2 ₃	A2 ₅	A2 ₇
С	TRST	CLKAB₁	LEAB₁	OEAB₁	GND	CLKAB ₂	LEAB ₂	OEAB ₂
D	TMS	GND	V _{CC}	GND	V _{cc}	GND	TDI	TDO
E	TCK	GND	V _{CC}	V _{CC}	GND	GND	N/C	V _{CC}
F	CLKBA ₁	LEBA ₁	OEBA ₁	GND	N/C	CLKBA ₂	LEBA ₂	OEBA ₂
G	B1₁	B1 ₃	B1 ₅	B1 ₇	B2 ₁	B2 ₃	B2 ₅	B2 ₇
Н	B1 ₀	B1 ₂	B1 ₄	B1 ₆	B2 ₀	B2 ₂	B2 ₄	B2 ₆

Connection Diagram

20051803

Top View See NS Package Number SLC64A

Truth Tables

Function Table for A to B Data Flow

	Inputs					
OEAB	LEAB	CLKAB	Α	В		
L	L	L	Х	B _o (Note 1)		
L	L	1	L	L		
L	L	1	Н	Н		
L	Н	Х	L	L		
L	Н	Х	Н	Н		
Н	Х	Х	Х	Z		

Function Table for B to A Data Flow

	Inputs				
OEBA	LEBA	CLKBA	В	Α	
Н	L	L	Х	A _o (Note 1)	
Н	L	1	L	L	
Н	L	1	Н	Н	
Н	Н	Х	L	L	
Н	Н	Х	Н	Н	
L	Х	Х	Х	Z	

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial (HIGH or LOW, inputs may not float)
- Z = High Impedance

Note 1: Output level before the indicated steady-state input conditions were established.

Functional Description

In the normal mode, these devices are 16-bit universal bus transceivers that combine D-type latches and D-type flipflops to allow data flow in transparent, latched, or clocked modes. They can be used as two 8-bit transceivers, or as one 16-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP may affect the normal functional operation of the universal bus transceivers. When the TAP is activated, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Std 1149.1-1990.

Data flow in each direction is controlled by output-enable (\overline{OEAB}) and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A data is stored on a low-to-high transition of CLKAB. When \overline{OEAB} is LOW, the B outputs are active. When \overline{OEAB} is HIGH, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the OEBA, LEBA, and CLKBA inputs. The output enables are complimentary to facilitate the use of a single $\overline{R/W}$ signal without additional logic.

Five dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), test clock (TCK), and test reset ($\overline{\text{TRST}}$). All testing and scan operations are synchronized to the TAP interface.

For details about the sequence of boundary scan cells in the SCAN16602, please refer to the BSDL (Boundary Scan Description Language) file available on our website at http://www.national.com/scan.

Absolute Maximum Ratings (Note 2)

Supply Voltage (V_{CC}) -0.5V to +4.6V

DC Input Diode Current (I_{IK})

 $V_1 = -0.5V$ -50 mA

DC Output Diode Current (I_{OK})

 $V_{\rm O} = -0.5 {\rm V}$ $-50 {\rm mA}$ DC Input Voltage (V_I) $-0.5 {\rm V}$ to $4.6 {\rm V}$ DC Output Voltage (V_O) $-0.5 {\rm V}$ to $4.6 {\rm V}$ DC Output Source/Sink Current (I_O) $\pm 50 {\rm mA}$

DC V_{CC} or Ground Current

Per Supply Pin ± 100 mA Junction Temperature $+150^{\circ}$ C

Storage Temperature -65°C to +150°C

Lead Temperature (Solder, 4sec)

64L BGA 220 °C

Thermal Resistance

BGA θ_{JA} 62°C/W

 Package Derating
 16.1mW/°C

 above 25°C

 ESD (Min)
 2000V

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{ccc} \text{SCAN16602} & 2.7\text{V to } 3.6\text{V} \\ \text{Input Voltage (V}_{\text{I}}) & \text{0V to } 3.6\text{V} \\ \text{Output Voltage (V}_{\text{O}}) & \text{0V to } 3.6\text{V} \\ \end{array}$

Operating Temperature (T_A)

Industrial -40°C to +85°C

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of SCAN circuits outside databook specifications.

DC Electrical Characteristics

Parameter	V _{CC} Industrial		Units	Conditions	
	(V)	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	
		Min	Max	1	
Minimum High Input Voltage	2.7	2.0		V	V _{OUT} = 0.1V
	3.6	2.0			or V _{CC} -0.1V
Maximum Low Input Voltage	2.7		0.8	V	V _{OUT} = 0.1V
	3.6		0.8		or V _{CC} -0.1V
Minimum High Output Voltage	2.7	2.5		V	$I_{OUT} = -100 \mu A$
All Outputs, All Options	3.6	3.4			
Minimum High Output Voltage	2.7	2.2		V	$V_{IN} = V_{IL} \text{ or } V_{IH},$
TDO Outputs, All Options					$I_{OH} = -12mA$
	3.0	2.2		V	$V_{IN} = V_{IL} \text{ or } V_{IH}$
					$I_{OH} = -24\text{mA}$
Minimum High Output Voltage	2.7	2.2		V	$V_{IN} = V_{IL} \text{ or } V_{IH}$
					$I_{OH} = -12mA$
SCANH16602 options	3.0	2.2		V	$V_{IN} = V_{IL} \text{ or } V_{IH}$
					$I_{OH} = -24\text{mA}$
, ,	2.7	2.2		V	$V_{IN} = V_{IL} \text{ or } V_{IH}$
					I _{OH} = -4mA
, ,	3.0	2.2		V	$V_{IN} = V_{IL} \text{ or } V_{IH}$
	0.7		0.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I _{OH} = -12mA
				V	I _{OUT} = 100 μA
			<u> </u>	.,,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
'	2.7		0.4	V	$V_{IN} = V_{IL} \text{ or } V_{IH},$
TDO Outputs, All Options	0.0		0.55		I _{OL} = 12mA
	3.0		0.55	V	$V_{IN} = V_{IL} \text{ or } V_{IH},$
Maximum Low Output Voltage	27		0.4	\/	$I_{OL} = 24\text{mA}$ $V_{IN} = V_{IL} \text{ or } V_{IH},$
	2.1		0.4	\ \ \ \	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 12\text{mA}$
	3.0		0.55	V	$V_{IN} = V_{IL} \text{ or } V_{IH},$
	0.0		0.55	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$I_{OL} = 24\text{mA}$
	Minimum High Input Voltage Maximum Low Input Voltage Minimum High Output Voltage All Outputs, All Options Minimum High Output Voltage TDO Outputs, All Options	Minimum High Input Voltage Maximum Low Input Voltage Minimum High Output Voltage All Outputs, All Options Minimum High Output Voltage TDO Outputs, All Options Minimum High Output Voltage TDO Outputs, All Options Minimum High Output Voltage A and B Ports: SCAN16602 and SCANH16602 options Minimum High Output Voltage A and B Ports: SCAN162602 and SCANH162602 options (25Ω series resistor options) Maximum Low Output Voltage All Outputs, All Options Maximum Low Output Voltage TDO Outputs, All Options Maximum Low Output Voltage A and B Ports: SCAN16602 and	(V) T _A = -40° Min Min Min 2.7 2.0 3.6 2.0 Maximum Low Input Voltage 2.7 3.6 2.0 Minimum Low Input Voltage 2.7 All Outputs, All Options 3.6 Minimum High Output Voltage 2.7 A and B Ports: SCAN16602 and SCANH16602 options 2.7 SCANH16602 options 3.0 SCANH162602 and SCANH162602 options (25Ω series resistor options) 3.0 Maximum Low Output Voltage All Options 2.7 All Outputs, All Options 3.6 Maximum Low Output Voltage TDO Outputs, All Options 2.7 Maximum Low Output Voltage A and B Ports: SCAN16602 and 2.7	CC T _A = -40°C to +85°C Min Max Minimum High Input Voltage 2.7 2.0 3.6 2.0 3.6 2.0 Maximum Low Input Voltage 2.7 0.8 3.6 0.8 0.8 Minimum High Output Voltage 2.7 2.5 All Outputs, All Options 3.6 3.4 Minimum High Output Voltage 2.7 2.2 A and B Ports: SCAN16602 and SCAN16602 and SCANH16602 options 3.0 2.2 Minimum High Output Voltage A and B Ports: SCAN162602 and SCANH162602 options (25Ω series resistor options) 3.0 2.2 Maximum Low Output Voltage All Outputs, All Options 3.6 0.2 Maximum Low Output Voltage TDO Outputs, All Options 3.6 0.2 Maximum Low Output Voltage A and B Ports: SCAN16602 and 2.7 0.4	(V) T _A = -40°C to +85°C Min Max Minimum High Input Voltage 2.7 2.0 V 3.6 2.0 V V Maximum Low Input Voltage 2.7 2.8 V Minimum High Output Voltage 2.7 2.5 V All Outputs, All Options 3.6 3.4 V Minimum High Output Voltage 2.7 2.2 V Minimum Low Output Voltage 2.7 2.2 V Maximum Low Output Voltage 2.7 0.2 V All Outputs, All Options 3.6 0.2 V Maximum Low Output Voltage 2.7 0.4 V Maximum Low Output Vo

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{CC} Indu		ustrial	Units	Conditions
		(V)	$T_A = -40$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
			Min	Max	1	
	Maximum Low Output Voltage A and B Ports: SCAN162602 and	2.7		0.4	V	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 4\text{mA}$
	SCANH162602 Options (25 Ω series resistor options)	3.0		0.6	V	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 12\text{mA}$
I _{IN}	Maximum Input Leakage Current	3.6		±5.0	μΑ	$V_I = V_{CC}$, GND
I _{ILR}	Input Low Current	3.6	-20	-250	μΑ	V _{IN} = GND
l _{oz}	Maximum I/O Leakage Current	3.6		±10.0	μΑ	V_{I} (OE) = V_{IL} , V_{IH} V_{I} = V_{CC} , GND V_{O} = V_{CC} , GND
I _{I(HOLD)}	Bus Hold Input Minimum Drive	2.7	±35		μΑ	V _I = 0.8V or 2.0V
	Hold Current (Note 3)	3.6		±500	1	$V_1 = 0 \text{ to } 3.6V$
V _{IKL}	Input Clamp Diode Voltage	2.7		-1.5	V	I _{IN} = -18mA
I _{OFF}	Power-off Leakage Current	0.0		±10.0	μΑ	$V_O = V_{CC}$, GND
I _{CC}	Maximum Quiescent Supply Current	3.6		20	μА	
I _{CCt}	Maximum I _{CC} Per Input	3.6		0.5	mA	$V_I = V_{CC} - 0.6V$

Note 3: Applies to devices with Bus Hold feature only.

Noise Specifications Applies to SCAN16602 and SCANH16602 options, $C_L = 30pF$, $R_L = 500\Omega$ to GND

Symbol	Parameter	V _{cc}	Industrial	Units	
		(V)	$T_A = 25^{\circ}C$		
			Typical Limits		
V _{OLP}	Quiet Output Maximum Dynamic VOL (Note 4)	3.3	1.2	V	
V _{OLV}	Quiet Output Minimum Dynamic VOL (Note 4)	3.3	-1.5	V	
V _{OHP}	Quiet Output Maximum Dynamic VOH (Note 5)	3.3	VOH + 0.9	V	
V _{OHV}	Quiet Output Minimum Dynamic VOH (Note 5)	3.3	VOH - 1.5	V	

Noise Specifications
Applies to SCAN162602 and SCANH162602 options, $C_L = 30pF$, $R_L = 500\Omega$ to GND

Symbol	Parameter	V _{cc}	Industrial	Units
		(V)	$T_A = 25^{\circ}C$	
			Typical Limits	
V _{OLP}	Quiet Output Maximum Dynamic VOL (Note 4)	3.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic VOL (Note 4)	3.3	-0.4	V
V _{OHP}	Quiet Output Maximum Dynamic VOH(Note 5)	3.3	VOH + 0.5	V
V _{OHV}	Quiet Output Minimum Dynamic VOH (Note 5)	3.3	VOH - 0.5	V

Note 4: Maximum number of outputs is defined as n. (n-1) outputs are switched LOW while the quiet output is monitored in a LOW (VOL) state. Also, (n-1) outputs are switched HIGH while the quiet output is monitored in a LOW (VOL) state.

Note 5: Maximum number of outputs is defined as n. (n-1) outputs are switched LOW while the quiet output is monitored in a HIGH (VOH) state. Also, (n-1) outputs are switched HIGH while the quiet output is monitored in a HIGH (VOH) state.

AC Electrical Characteristics

Normal Operation, over recommended operating supply voltage and temperature ranges unless otherwise specified.

Symbol	Parameter	SCAN16602,	SCANH16602	Units
		$C_L = 30 \text{ pF}$ $R_L = 500\Omega \text{ to GND}$		
		Min	Max	7
t _{PLH} ,	Propagation Delay		5.5	ns
t _{PHL}	A to B, B to A		5.5	
t _{PLH} ,	Propagation Delay		6.0	ns
t _{PHL}	CLKAB to B, CLKBA to A		6.0	
t _{PLH} ,	Propagation Delay		6.0	ns
t _{PHL}	LEAB to B, LEBA to A		6.0	
t _{PLZ} ,	Disable Time, OEAB to B, OEBA to A		7.5	ns
t _{PHZ}			7.5	
t _{PZL} ,	Enable Time, OEAB to B, OEBA to A		7.5	ns
t _{PZH}			7.5	

AC Electrical Characteristics

Normal Operation, over recommended operating supply voltage and temperature ranges unless otherwise specified.

Symbol	Parameter	SCAN162602 $C_L = 30 \text{ pF}$ $R_L = 500\Omega \text{ to GND}$		Units
				1
		Min	Max]
t _{PLH} ,	Propagation Delay		6.0	ns
t _{PHL}	A to B, B to A		6.0	
t _{PLH} ,	Propagation Delay		6.5	ns
t _{PHL}	CLKAB to B, CLKBA to A		6.5	
t _{PLH} ,	Propagation Delay		6.5	ns
t _{PHL}	LEAB to B, LEBA to A		6.5	
t _{PLZ} ,	Disable Time, OEAB to B, OEBA to A		8.0	ns
t_{PHZ}			8.0	
t _{PZL} ,	Enable Time, OEAB to B, OEBA to A		8.0	ns
t _{PZH}			8.0	

AC Electrical Characteristics

Normal Operation, over recommended operating supply voltage and temperature ranges unless otherwise specified.

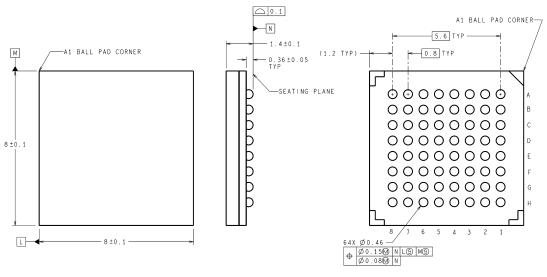
Symbol	Parameter	SCANH162602		Units
		C _L =	30 pF	1
		R _L = 500	Ω to GND	
		Min	Max	1
t _{PLH} ,	Propagation Delay		6.0	ns
t _{PHL}	A to B, B to A		6.0	
t _{PLH} ,	Propagation Delay		6.5	ns
t _{PHL}	CLKAB to B, CLKBA to A		6.5	
t _{PLH} ,	Propagation Delay		6.5	ns
t _{PHL}	LEAB to B, LEBA to A		6.5	
t _{PLZ} ,	Disable Time, OEAB to B, OEBA to A		8.0	ns
t _{PHZ}			8.0	
t _{PZL} ,	Enable Time, OEAB to B, OEBA to A		8.0	ns
t _{PZH}			8.0	

AC Operating Requirements

Normal Operation, over recommended operating supply voltage and temperature ranges unless otherwise specified

Symbol	Parameter	All Options	Units
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
		C _L = 30 pF,	
		$R_L = 500\Omega$ to GND	
		Guaranteed Minimum	
t _S	Setup Time, A to CLKAB or B to CLKBA	1.5	ns
t _H	Hold Time, A to CLKAB or B to CLKBA	2.0	ns
t _s	Setup Time, A to LEAB or B to LEBA	1.5	ns
t _H	Hold Time, A to LEAB or B to LEBA	2.5	ns
t _W	Pulse Width, CLKAB or CLKBA, high or low	2.0	ns
t _W	Pulse Width, LEAB or LEBA high	2.0	ns
f _{max}	Maximum CLKAB or CLKBA Clock Frequency	250	MHz

AC Operating Requirements


can Test Operation, over recommended operating supply voltage and temperature ranges unless otherwise specified

Symbol	Parameter	All Options	Units
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
		$C_L = 30 pF,$	
		$R_L = 500\Omega$ to GND	
		Guaranteed Minimum	
t _S	Setup Time, H or L, TMS to TCK	2.0	ns
t _H	Hold Time, H or L, TCK to TMS	1.0	ns
t _S	Setup Time, H or L, TDI to TCK	1.0	ns
t _H	Hold Time, H or L, TCK to TDI	2.0	ns
t _W	Pulse Width TCK High or Low	10	ns
t _W	Pulse Width TRST, Low	2.5	ns
f _{max}	Maximum TCK Clock Frequency	25	MHz
t _{REC}	Recovery Time, TRST to TCK	2.0	ns

Capacitance and I/O Characteristics Refer to National's website for IBIS models at http://www.national.com/scan

Device ID Register

Ordering Code	Features	Device ID	Manufacturer & LSB
SCAN16602SM	No bus hold, no series resistor	FC30	01F
SCANH16602SM	With bus hold only	FC31	01F
SCAN162602SM	With 25Ω series resistors in outputs	FC32	01F
SCANH162602SM	With 25Ω series resistors and bus hold	FC33	01F

DIMENSIONS ARE IN MILLIMETERS

SLC64A (Rev C)

64-Lead Ball Grid Array Package Order Number SCAN16602SM, SCANH16602SM, SCAN162602SM, SCANH162602SM NS Package Number SLC64A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560